
In this lecture, we will explore discrete systems and how to model them in three 
different forms:
1. As block diagrams – this is similar to a circuit schematic.  It shows how signals 

flows in the system and the operations being performed on the signals.
2. As difference equation – this relates input sample sequence to output sample 

sequence.
3. As transfer function in z-domain – this is similar to the transfer function for 

Laplace transform. However I will be introduce the z-transform, which is 
essential to represent discrete systems.



Let us first consider a linear discrete time system shown here as T{.}. ({.} is to 
indicate that T is an arbitrary system.).  The system takes in the input sequence x[n] 
and produces the output sequence y[n].

A linear system means it obeys the principle of superposition.  Remember from last 
year, you have learned this principle in depth. There are two separate property of a 
linear system:
1. Response for input (A+B) = Response for input A + Response  for input B.
2. If you scale input by a factor K, the output is scaled by the same factor K. For 

example, if you double the input (K=2), the output will also double.

The system is also shift invariant.  This means  if input is delayed by k samples,
i.e. x[n] à x[n-k] ,  then the output is the same but also delayed by k samples,      
i.e. y[n] à y[n-k].  (See next slide.)



A shift-invariant system means that if you shift an input signal by k samples, the 
system response to x[n-k] is simply y[n-k].  It essentially means that the signal can 
start any time, the output remains the same but with the same delay as the input.

For this course, we will always assume that the discrete time system is linear, shift-
invariant.



When building a linear discrete time system, we use only THREE operators:
1. Scaling signal by a constant. This is the same as amplifying or attenuating the 

signal.
2. Adding – this is obvious.
3. Delay – this is simply delaying the input sample by k sampling clock cycles (i.e. k 

clock period, equivalent to t = k Ts, where Ts is the sampling interval (i.e. time 
between two samples).

It is amazing that with only these three operators, we can construct fairly complex 
discrete time systems implemented on a microcontroller such as the PyBench board 
as used in the Lab.



Consider a simple discrete time system which takes the current and three previous 
input samples, and calculate the average value:
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This is known as a moving average filter.  Since averaging reduces the effect of fast 
changes, this is essentially a lowpass filter.  
The slide here shows two different representation of the system.  
1. Signal flow diagram – this is similar to a circuit schematic showing how signals 

are transferred to various modules. Its graphical nature allows a reader to relate 
to the actual physical system easier than using mathematical equations.

2. Difference equation – this is expressed in terms of a formulae defining the 
relationship between input samples and output samples.  

Note that the input signal x[n] is passed to three sample delay units D, to obtain  
x[n-1], x[n-2], x[n-3].  These are called ”taps” of the filter.  In this case, there are four 
taps to this filter.
Such sample delays can be implemented in an electronic system by:
1. Using an array in a microprocessor or computer to store different x values;
2. Using D-flipflops (D-FFs) in digital hardware in a shift register configuration. In 

this case, assuming that all signals are 10-bit wide (from the ADC), then we need 
three sets of 10 D-FFs.



Here is a contemporary example of the use of moving average filter.  Instead of 
averaging over four input values, this shows a 7-day moving average of COVID cases 
in the UK.  You can clearly see the averaging effect of this lowpass filter!



The third method of representing a discrete time system is to use z-transform to 
represent the delay operators. Again, I will discuss the mathematical basis of z-
transform in a later lecture.  For now all you need to know (and trust) is that delay a 
signal x[n] by k sampling periods to give x[n-k] is the same as multiplying the z-
transform of the signal X[z] by the factor z-k.

Using this fact, we can derive the relationship between Y[z] and X[z] directly from 
the difference equation:
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From the previous slide, we can compute Y[z]/X[z], and obtain the transfer function 
H[z]:

Moving average filter is a lowpass filter.  It has a DC gain of 1 (check this for yourself 
and make sure you understand why), and it reduces the amplitude of fast changing 
signals – i.e. at higher frequencies.
Take a sequence x[n] = {1.0, 1.0, 1.0, 1.0, 1.1, 0.8, 1.2, 0.9, 1.0, 1.2, 0.9, …}, which is 
a discrete signal at 1v, but with random noise added.  The noise amplitude (i.e. 
deviation from 1.0) is ±0.2v. 
Assuming that all x[n] = 0 for n<0,
y[n] = (0.25, 0.5, 0.75, 1.0, 1.025, 0.975, 1.025, 1.0, 1.0, 1.075, 1.0, …..}
It is clear that y[n] is still centred around 1v, but the fluctuation is reduce to 0.025v!
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We can computer the frequency response of this simple 4-tap FIR or moving 
average filter with the following transfer function:

I deliberately skip the mathematic derivation of the frequency response for such a 
filter for now.  What is important to note is that the frequency response 
demonstrates that averaging four samples is effectively lowpass filtering the signal.  
The roll off (rate of attenuation as frequency increases) is very gentle. 
The x-axis is the digital frequency expressed in angle increment per sample, 
normalized to Fs/2 (Nyquist frequency).  For example, if the sampling frequency is 
8kHz, the normalized frequency of 1 is at 4kHz.

There is a notch (null response) at 2kHz, when the response of the filter is zero! 
Same for frequency of 4kHz.   Why?  Test it for yourself.

𝐻 𝑧 = 𝑌 𝑧 /𝑋[𝑧] = 0.25(1 + 𝑧%& + 𝑧%' + 𝑧%$)



One important characterization of the 4-tap moving average filter is its impulse 
response.   Plotted here is the output of the filter to an impulse at n=0.  That is, if 
the input x[n] is an impulse a n=0,  then its effect on the output  y[n] is going to last 
of four sample periods at n=0, 1, 2, and 3.  Since it is averaging, the weighting is 0.25 
everywhere.

As will be seen in the next lecture, we can also represent this impulse response as 
the “transfer function” of the moving average filter in the z-domain as:

𝐻 𝑧 =
1
4 (1 + 𝑧

%& + 𝑧%' + 𝑧%$)

If we go back to the COVID cases example, the unit of the x-axis is days (i.e. n = 3 
means three days from now), the impulse response for the 7-day moving average 
”filter” is as shown in the slide.



The moving average filter we used previously only considered 4 input sample values 
(we call this a “4-tap” filter, tapping into only 4 signal values).  Instead of 4-tap, one 
can choose to perform the moving average over K-taps.
What do you expect the effect of using a higher value of K?  You will be averaging 
over a longer time (sample) window, and therefore this will have a “stronger” 
lowpass filtering effect. In other words, the attenuation at high frequency will be 
stronger.  
If you measure the frequency response of the moving filter, you will find that the 
drop in gain as frequency increases goes up with K.  Exactly how we can derive the 
frequency response of a K-tap moving average filter will be considered at a later 
lecture.
Instead of using equal value coefficients on the taps in this filter, we could choose to 
use different coefficients.  In which case, the filter you implement will have the 
difference equation and the transfer function as shown in the slide.

This generalised form of filter is known as FIR or finite impulse response filter.  The 
name arises because if you apply an impulse at the input x[n] = d[n] to a filter with N 
taps, the output response y[n] will last exactly N samples later, which is finite.  This 
output y[n] for x[n] = unit impulse is known as impulse response of the system.

It can be shown that for an arbitrary signal x[n], its response y[n] will always be 
finite – meaning that if x[n] dies down to zero, y[n] will become zero in finite time.
By choosing different values for the coefficients bi, one can implement any type of 
filters: lowpass, highpass, bandpass, bandstop etc.



Let us now consider a completely new class of filter.  Here we have a filter that 
derives the output from both inputs and past output samples.  The simplest form is 
the one shown here – known as a first-order recursive filter.  

The output contains two components: 1) input x[n] multiplied by a coefficient (1-a); 
2) output y[n-1] multiplied by a coefficient a.

This can be represented by the difference equation:

Now takes the z-transform of this difference equation. We get:

From this we can derive the transfer function:

Recursive filters are also called Infinite Impulse Response (IIR) filters because the 
response of the filter to a unit impulse theoretically lasts forever!  However, if an IIR 
filter is stable, its impulse response will decay to zero.  If the impulse response does 
not decay to zero, the filter is NOT stable.
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Now let us consider what output we get if we apply a unit step function at the input.  
The output is known as the step response of this filter.

Shown above are the outputs y in respond to the input going from 0 to 1.

The result is an exponential rise toward 1, the time constant of the rise if effective 
a.  (Similar to what we have done before on 1st order lowpass filter and RC 
network.)



Here are the three big ideas in this lecture:

1. Discrete-time systems can be characterized by using block diagram with 
multiplier, adder and delay elements;

2. We can use difference equations
3. We can use z-domain representation for the signals, and transfer function for 

the system.

FIR filter’s output only depends on current and past inputs.

FIR filter has N taps (order N) and the impulse response is finite.  Further, by 
choosing the coefficient of the FIR filter (i.e. the tap weighting) we can implement 
ANY type of filters: lowpass, highpass, bandpass, bandstop.

IIR filter is recursive meaning that current output depends on both past outputs and 
current and past inputs.  

IIR filters are much more efficient to implement than their equivalent FIR filters.


